Mode of administration-dependent brain uptake of indomethacin: sustained systemic input increases brain influx.

نویسندگان

  • Arik Dahan
  • Amnon Hoffman
چکیده

Nonsteroidal anti-inflammatory drugs, including indomethacin, have been found in both epidemiological and clinical studies to reduce the prevalence and severity of Alzheimer's disease. However, long-term use of indomethacin is limited by significant gastrointestinal and renal toxicities. An indomethacin prodrug that delivers low and continuous blood levels of the drug showed a superior safety profile and similar efficacy in comparison to an equivalent dose of free indomethacin because of limited systemic exposure and preferred brain uptake. The purpose of the present investigation was to evaluate whether sustained systemic input causes an increased brain influx in comparison to rapid input of the drug. Oral indomethacin, indomethacin prodrug, or intravenous indomethacin infusion was administered to rats. The infusion was designed to mimic the plasma indomethacin levels resulting from the prodrug. The resultant blood levels and brain indomethacin uptake were evaluated. The brain indomethacin concentrations 8 h following indomethacin administration were 0.45, 0.3, and 0.31 microg/g after the oral indomethacin, oral prodrug, and intravenous infusion, respectively. The corresponding plasma concentrations were 14.1, 4.1, and 4 microg/ml. Therefore, brain versus plasma indomethacin level ratios were 2.5-fold higher after slow systemic input of indomethacin in comparison to rapid drug input. In conclusion, indomethacin brain uptake was found to be mode of administration-dependent, and a sustained input function increases the drug brain uptake. Thus, these unique results indicate that an appropriate indomethacin controlled release delivery system may induce the desirable brain-related pharmacodynamic effects, while avoiding the concentration-dependent adverse effects. These findings may contribute to improved therapy in Alzheimer's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Communication Mode of Administration-Dependent Brain Uptake of Indomethacin: Sustained Systemic Input Increases Brain Influx

Nonsteroidal anti-inflammatory drugs, including indomethacin, have been found in both epidemiological and clinical studies to reduce the prevalence and severity of Alzheimer’s disease. However, long-term use of indomethacin is limited by significant gastrointestinal and renal toxicities. An indomethacin prodrug that delivers low and continuous blood levels of the drug showed a superior safety p...

متن کامل

Arachidonic acid and prostaglandins enhance potassium-stimulated calcium influx into rat brain synaptosomes.

Exogenous administration of arachidonic acid, prostaglandins PGF2 alpha, PGD2 and PGE2 increased potassium-stimulated uptake of calcium in rat brain synaptosomes from the brain of the rat, but had no effect on the basal uptake of calcium. Arachidonic acid-induced uptake of calcium was mediated by its prostaglandin metabolites, because a cyclooxygenase inhibitor, indomethacin, inhibited the resp...

متن کامل

DP-155, a lecithin derivative of indomethacin, is a novel nonsteroidal antiinflammatory drug for analgesia and Alzheimer's disease therapy.

DP-155 is a lipid prodrug of indomethacin that comprises the latter conjugated to lecithin at position sn-2 via a 5-carbon length linker. It is cleaved by phospholipase A2 (PLA)(2) to a greater extent than similar compounds with linkers of 2, 3, and 4 carbons. Indomethacin is the principal metabolite of DP-155 in rat serum and, after DP-155 oral administration, the half-life of the metabolite w...

متن کامل

Lipopolysaccharide alters the blood-brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer's disease.

Alzheimer's disease (AD) brains are characterized by accumulation of amyloid beta protein (Abeta) and neuroinflammation. Increased blood-to-brain influx and decreased brain-to-blood efflux across the blood-brain barrier (BBB) have been proposed as mechanisms for Abeta accumulation. Epidemiological studies suggest that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin slows the progre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 35 2  شماره 

صفحات  -

تاریخ انتشار 2007